ANALISIS ALGORITMA K-MEANS DALAM PENGELOMPOKAN PERKARA PERCERAIAN BERDASARKAN KELURAHAN DI KOTA JAMBI

  • Elvi Yanti Universitas Dinamika Bangsa

Abstract

Getting married and living happily ever after is the hope of both brides when carrying out the wedding. During the household, no one expects a dispute
let alone an end to divorce. A number of areas in jambi city based on the Annual Report of jambi Religious Court from 2017, 2018 and 2019 are known
that there is an increase in divorce rates reviewed from the number of cases received by the Jambi Religious Court which each year is always increasing.
Therefore, it is necessary to know which areas are experiencing an increase in divorce cases by using one of the methods contained in the data mining,
namely the k-means clustering algorithm. From the case, the authors conducted a study to group divorce cases by village in jambi city by applying
quantitative research methods with a sample of 62 data with the aim of knowing the divorce rate in jambi city in order to provide a solution that is able
to map the villages that conduct divorce. The results of this study showed that the highest divorce rate in jambi city for high clusters (C2) as many as
11 villages, for medium clusters (C1) as many as 20 Villages and for low clusters (C0) as many as 30 Villages then the results obtained from data testing
on Rapidminer with k-means algorithm obtained results that matched displaying three classes of classification results.
Keywords: K-Means, Clustering, Divorce , Marriage, Rapidminer

References

[1] S. Ningsih, S. Suhada, R. Dewi, and A. P. Windarto, “Pengklasteran Dokumen Tentang Dispensasi Nikah
Menggunakan Algoritma K-Medoids,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 677, 2019, doi:
10.30645/senaris.v1i0.74.
[2] S. H. Sa’dah, M. Safii, and I. Parlina, “Analisa Metode K-Means dalam Mengelompokkan Perkara Perceraian
Berdasarkan Daerah Simalungun,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 349, 2019, doi:
10.30645/senaris.v1i0.40.
[3] W. J. Andari and E. Buulolo, “Implementasi Algoritma C4.5 Mengetahui Penyebab Perceraian Dalam Pernikahan
(Studi Kasus: Pengadilan Agama Medan Kelas I-A),” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 3, p. 365,
2020, doi: 10.30865/jurikom.v7i3.2133.
[4] F. H. Sekarani and S. Khansa, “Klustering Jumlah Penduduk Kota Bandung Per Kelurahan Dan Kecamatan
Berdasarkan Status Perkawinan Pada Tahun 2019 Dengan Metode K-Means,” pp. 92–101, 2020.
[5] E. Asril, F. Wiza, and Y. Yunefri, “Analisis Data Lulusan dengan Data Mining untuk Mendukung Strategi
Promosi Universitas Lancang Kuning,” J. Teknol. Inf. Komun. Digit. Zo., vol. 6, no. 2, pp. 24–32, 2015.
[6] S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa
Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no.
1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
[7] M. Mardalius, “Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris
Menggunakan Algoritma K-Means,” Jurteksi, vol. 4, no. 2, pp. 123–132, 2018, doi: 10.33330/jurteksi.v4i2.36.
[8] H. Yulianton, “Data Mining untuk Dunia Bisnis,” Teknol. Inf. Din., vol. XIII, no. 1, pp. 9–15, 2014.
[9] M. R. L. Iin Parlina, Agus Perdana Windarto, Anjar Wanto, “Memanfaatkan Algoritma K-Means Dalam
Menentukan Pegawai Yang Layak Mengikuti Asessment Center,” Memanfaatkan Algoritm. K-Means Dalam
Menentukan Pegawai Yang Layak Mengikuti Asessment Cent. Untuk Clust. Progr. Sdp, vol. 3, no. 1, pp. 87–93,
2018.
[10] L. Maulida, “Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata
Unggulan Di Prov. Dki Jakarta Dengan K-Means,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, p. 167,
2018, doi: 10.14421/jiska.2018.23-06.
[11] Y. Wicaksono, “Segmentasi Pelanggan Bisnis Dengan Multi Kriteria Menggunakan K-Means,” Indones. J. Bus.
Intell., vol. 1, no. 2, p. 45, 2019, doi: 10.21927/ijubi.v1i2.872.
[12] J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president
university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20, 2013.
[13] W. Wibisana, “Pernikahan dalam Islam,” J. Pendidik. Agama Islam - Ta’lim, vol. 14, no. 2, pp. 185–193, 2016.
[14] F. Fachrina and P. Rinaldi Eka, “Upaya Pencegahan Perceraian Berbasis Keluarga Luas dan Institusi Lokal dalam
Masyarakat Minangkabau di Sumatera Barat,” Antropol. Indones., vol. 34, no. 2, 2014, doi:
10.7454/ai.v34i2.3966.
[15] N. L. Ratniasih, “Optimasi Data Mining Menggunakan Algoritma Naïve Bayes Dan C4.5 Untuk Klasifikasi
Kelulusan Mahasiswa,” J. Teknol. Inf. dan Komput., vol. 5, no. 1, pp. 28–34, 2019, doi: 10.36002/jutik.v5i1.634
Published
2021-04-26
How to Cite
YANTI, Elvi. ANALISIS ALGORITMA K-MEANS DALAM PENGELOMPOKAN PERKARA PERCERAIAN BERDASARKAN KELURAHAN DI KOTA JAMBI. Jurnal Processor, [S.l.], v. 16, n. 1, p. 9-19, apr. 2021. ISSN 2528-0082. Available at: <http://ejournal.stikom-db.ac.id/index.php/processor/article/view/920>. Date accessed: 05 aug. 2021. doi: https://doi.org/10.33998/processor.2021.16.1.920.
Section
Articles