Implementasi Algoritma Apriori untuk Mendapatkan Pola Kelulusan Mahasiswa

  • Azwar Anas STIE-GK Muara Bulian
  • Ade Jermawinsyah Zebua STIE-Graha Karya Muara Bulian

Abstract

Data transactions that occur every day will become chunks of data in an institution's database. These chunks of data have no value if mining is not carried out in obtaining interesting knowledge and information. The purpose of this study was to analyze chunks of graduation data for STIE-Graha Karya Muara Bulian students, in order to obtain patterns formed from predetermined variables. The method used is the Apriori Algorithm. This is in accordance with the main function of this algorithm, which is to analyze the frequent itemset. The results showed that for the 2-itemset data the highest support value was the combination of Female Gender and Work with a value of 34%, while the highest confidence value was in the combination of a Grade Point Average above 3.5 and Work with a score of 85%. As for the 3-itemset, the highest support value is in the combination if the GPA is above 3.5, gender is female and the work status reaches 14% and confidence is 90%.

References

tree,” Procedia Comput. Sci., vol. 45, no. C, pp. 101–110, 2015, doi: 10.1016/j.procs.2015.03.097.
[2] S. C. Jeeva and E. B. Rajsingh, “Intelligent phishing url detection using association rule mining,” Human-centric Comput. Inf. Sci., vol. 6, no. 1, 2016, doi: 10.1186/s13673-016-0064-3.
[3] M. Harahap, A. M. Husein, S. Aisyah, F. R. Lubis, and B. A. Wijaya, “Mining association rule based on the diseases population for recommendation of medicine need,” J. Phys. Conf. Ser., vol. 1007, no. 1, 2018, doi: 10.1088/1742-6596/1007/1/012017.
[4] M. Barkhordari and M. Niamanesh, “Kavosh: an effective Map-Reduce-based association rule mining method,” J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0129-4.
[5] S. C. Jeeva and E. B. Rajsingh, “Intelligent phishing url detection using association rule mining,” Human-centric Comput. Inf. Sci., vol. 6, no. 1, 2016, doi: 10.1186/s13673-016-0064-3.
[6] R. Samo, R. D. Dewandono, T. Ahmad, M. F. Naufal, and F. Sinaga, “Hybrid association rule learning and process mining for fraud detection,” IAENG Int. J. Comput. Sci., vol. 42, no. 2, pp. 59–72, 2015.
[7] L. Zhang, W. Wang, and Y. Zhang, “Privacy Preserving Association Rule Mining: Taxonomy, Techniques, and Metrics,” IEEE Access, vol. 7, no. April, pp. 45032–45047, 2019, doi: 10.1109/ACCESS.2019.2908452.
[8] M. Abdel-Basset, M. Mohamed, F. Smarandache, and V. Chang, “Neutrosophic association rule mining algorithm for big data analysis,” Symmetry (Basel)., vol. 10, no. 4, pp. 1–19, 2018, doi: 10.3390/sym10040106.
[9] M. Kaur and S. Kang, “Market Basket Analysis: Identify the Changing Trends of Market Data Using Association Rule Mining,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 78–85, 2016, doi: 10.1016/j.procs.2016.05.180.
[10] J. M. Luna, M. Ondra, H. M. Fardoun, and S. Ventura, “Optimization of quality measures in association rule mining: An empirical study,” Int. J. Comput. Intell. Syst., vol. 12, no. 1, pp. 59–78, 2018, doi: 10.2991/ijcis.2018.25905182.
[11] D. Ai, H. Pan, X. Li, Y. Gao, and D. He, “Association rule mining algorithms on high-dimensional datasets,” Artif. Life Robot., vol. 23, no. 3, pp. 420–427, 2018, doi: 10.1007/s10015-018-0437-y.
[12] F. Wang et al., “Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns,” Energy Convers. Manag., vol. 171, pp. 839–854, 2018, doi: 10.1016/j.enconman.2018.06.017.
Published
2022-04-30
How to Cite
ANAS, Azwar; ZEBUA, Ade Jermawinsyah. Implementasi Algoritma Apriori untuk Mendapatkan Pola Kelulusan Mahasiswa. Jurnal Ilmiah Media Sisfo, [S.l.], v. 16, n. 1, p. 54-61, apr. 2022. ISSN 2527-7340. Available at: <http://ejournal.stikom-db.ac.id/index.php/mediasisfo/article/view/1173>. Date accessed: 24 mar. 2023. doi: https://doi.org/10.33998/mediasisfo.2022.16.1.1173.