Analisis dan Perancangan Jaringan Saraf Tiruan untuk Mengidentifikasi Tingkat Kematangan Buah Belimbing Manis (Averrhoa carambola L.)

  • Oki Dahwanu stikom
  • Sarjono Sarjono Stikom

Abstract

Starfruit is one of the fruits that are widely cultivated in Indonesia. But at this time sorting of starfruit is still
done manually by humans, consequently resulting in a uniform level of maturity that is not good. For this
reason, a system is needed that can identify the level of maturity of starfruit with artificial neural networks.
The main problem of designing artificial neural networks is how to analyze and design an artificial neural
network architecture in order to determine the maturity level of sweet starfruit properly. This study aims to
design artificial neural networks with backpropagation method to identify the maturity level of starfruit.
From the results of the study, the best configuring of backpropagation artificial neural network model is a
model of artificial neural networks with 3 inputs, 11 hidden layer neurons and 3 outputs (3-11-3). With this
configuration, artificial neural networks are able to identify the level of maturity with a success rate of 95.8%
of 48 starfruit test data.

References

[1] Haykin, S. 2009. Neural Network and Learning Machines (3rd ed.). New Jersey: Pearson Prentice
Hall..
[2] Kaswidjanti, W., Widiastuti, F., & Rustamaji, H.C. 2013. Analisis dan Perancangan Jaringan Saraf
Tiruan dengan Metode Backpropagation pada Aplikasi Pengenalan Tanda Tangan. Jurnal Teknik.
Volume 3, Nomor 2. Yogyakarta: UPN Veteran.
[3] Silva, I., Spatti, D., Flauzino, R. A., Liboni, L., & Alves, S. 2017. Artificial Neural Networks.
Switzerland: Springer International Publishing.
[4] Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. 2013. Mitosis Detection in Breast
Cancer Histology Images with Neural Networks. Lecture Notes in Computer Science, Voume 1, Nomor
1.
[5] Deeb, O. 2010. Correlation Ranking and Stepwise Regression Procedures in Principal Components
Artificial Neural Networks Modeling With Application to Predict Toxic Activity and Human Serum
Albumin Binding Affinity. Chemometrics and Intelligent Laboratory Systems, Volume 104, Nomor 1.
[6] Wiharja, Y. P., & Harjoko, A. 2014. Pemrosesan Citra Digital untuk Klasifikasi Mutu Buah Pisang
Menggunakan Jaringan Saraf Tiruan. Indonesian Journal of Electronics and International System,
Volume 4 Nomor 1.
[7] Badan Pusat Statistik RI. 2016. Hortikultura. Retrieved Mei 29, 2018, from Badan Pusat Statistik
Republik Indonesia: https://www.bps.go.id/subject/55/hortikultura.html#subjekViewTab3
[8] Kusumaningtyas, S., & Asmara, R. A. 2016. Identifikasi Kematangan Buah Tomat Berdasarkan Warna
Menggunakan Metode Jaringan Saraf Tiruan (JST). Jurnal Informatika Polinema, Volume 2, Nomor 2.
Malang: Politeknik Negeri Malang.
[9] Effendi, M., Fitriyah, & Effendi, U. 2017. Identifikasi Jenis dan Mutu Teh Menggunakan Pengolahan
Citra Digital dengan Metode Jaringan Saraf Tiruan. Jurnal Teknotan, Volume 11, Nomor 2. Malang:
Universitas Brawijaya.
Published
2019-03-14
How to Cite
DAHWANU, Oki; SARJONO, Sarjono. Analisis dan Perancangan Jaringan Saraf Tiruan untuk Mengidentifikasi Tingkat Kematangan Buah Belimbing Manis (Averrhoa carambola L.). Jurnal Manajemen Sistem Informasi, [S.l.], v. 4, n. 1, p. 65-74, mar. 2019. ISSN 2548-5873. Available at: <http://ejournal.stikom-db.ac.id/index.php/manajemensisteminformasi/article/view/596>. Date accessed: 22 oct. 2019.