Metode Clustering Untuk Mengelompokan Titik Panas Bumi

  • Wahyudi Nasution unama
  • Rusdianto Roestam unama

Abstract

Some of the factors that cause forest and land fires are natural factors and human negligence. To determine areas prone to forest and land fires, namely by analyzing data mining techniques using the clustering method and k-means algorithm in order to find out the clustering rules between these clusters. The data processed is data as much as geothermal points obtained from the Manggala Agni Daops Sumatran XI / BTP which has been recapitulated from January to June and the variables used are id, level of confidence, satellite, probability radius and district. The potential for forest and land fires used is based on very vulnerable, prone and non-prone areas. With this analysis, information on areas that are prone to forest and land fires can be obtained and can help when carrying out integrated patrols and preventive patrols because it is known that areas prone to forest and land fires in the Manggala Agni Daops Sumatra XI / BTP work area, namely Tanjung Regency jabung timur and tanjung jabung barat.

References

[1] Al-mar’atush Shoolihah, M. Tanzil Furqon, Agus Wahyu Widodo. 2017. Implementasi Metode Improved K-Means untuk Mengelompokkan Titik Panas Bumi, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X Vol. 1, No. 11, November 2017, hlm. 1270-1276 http://j-ptiik.ub.ac.id : Universitas Brawijaya
[2] Edo Fadila Sirat, Budi Darma Setiawan,Fatwa Ramdani. 2018. Analisis Perbandingan Algoritme K-Means dan Isodata untuk Klasterisasi Data Kejadian Titik Api di Wilayah Sumatera pada Tahun 2001 hingga 2014. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X Vol. 2, No. 11, November 2018, Universitas Brawijaya.
[3] Hermawati Fajar Astuti 2014. Data Mining. CV Andi Offset.
[4] Muhidin dan Abdurahman. 2012. Analisis Korelasi, Regresi, dan Jalur. CV Pustaka Setia.
[5] Prasetyo Eko 2014. Data Mining Konsep dan Aplikasi Menggunaakan MATLAB. CV Andi Offset.
[6] Sukamto, Ibnu Daqiqil Id, T.Rahmilia Angraini. 20018 Penentuan Daerah Rawan Titik Api di Provinsi Riau Menggunakan Clustering Algoritma K-Means (Determination of Fire Point Prone Areas in Riau Province Using Clustering K-Means Algorithm). JUITA p-ISSN: 2086-9398 (print); e-ISSN: 2579-9801 (online); Volume VI, Nomor 2, November 2018 : Universitas Riau Kampus Binawidya
[7] Suyanto 2017. Data Mining Untuk Klasifikasi dan Klasterisasi Data. Informatika Bandung
[8] Suhandio Handoko, Fauziah Fauziah, Endah Tri Esti Handayani. 2020. IMPLEMENTASI DATA MINING UNTUK MENENTUKAN TINGKAT PENJUALAN PAKET DATA TELKOMSEL MENGGUNAKAN METODE K-MEANS CLUSTERING, Vol 25, No 1(2020)
[9] Vianti Mala Anggraeni Kusuma, M. Tanzil Furqon, Lailil Muflikhah 2017. Implementasi Metode Fuzzy Subtractive Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X Vol. 1, No. 9, Juni 2017, hlm. 876-884 : Universitas Brawijaya
[10] Widodo Prabowo Pudjo, dkk 2014. Penerapan Data Mining Dengan MATLAB. Penerbit Rekayasa Sains, Bandung.
Published
2022-06-22
How to Cite
NASUTION, Wahyudi; ROESTAM, Rusdianto. Metode Clustering Untuk Mengelompokan Titik Panas Bumi. Jurnal Manajemen Sistem Informasi, [S.l.], v. 7, n. 2, p. 208-222, june 2022. ISSN 2548-5873. Available at: <http://ejournal.stikom-db.ac.id/index.php/manajemensisteminformasi/article/view/1241>. Date accessed: 22 mar. 2023. doi: https://doi.org/10.33998/jurnalmanajemensisteminformasi.2022.7.2.1241.